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Abstract

In this note, two PDE-based mapping operators for the generation of unstruc-
tured grids are compared. While the Winslow operator allows the construction
of valid meshes for most configurations, the functional-based operators based
on area, length, orthogonality and their combinations provide a finer control
on the resulting meshes.

1 Introduction: Mapping Models

A widely used methodology to generate and to smooth meshes is to map
an isotropic grid from parametric space onto an arbitrary domain in physical
space. This can be performed by the solution of a system of partial differential
equations, where the target shape in the physical domain, Ω, is imposed by
the body coordinates through the boundary conditions of the PDE solved in
computational space, C.

The most frequently used operator is the Winslow set of elliptic equations
([9]) which yields smooth meshes for most conventional convex shapes. How-
ever, inappropriate mesh distributions can result for sharp concave corners
where large changes of curvature occur. In [6], Knupp indicates that while the
Winslow operator guarantees continuous global mapping, truncation errors
can lead to folded meshes. In such instances, additional control is needed to
adapt the mesh around the boundaries to insure the validity of the results,
especially around high curvature parts of the physical boundary.

To increase the control over the grid quality [7] introduced a composite
mapping including forcing terms to maintain orthogonality near boundaries.
In [8], a new system of elliptic operators have been derived to obtain uniform
cell area by controlling the Jacobian along the curvilinear coordinate direc-
tions. However, these forcing terms are difficult to choose a priori to obtain a
specific mapping behavior.
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A class of mapping operators that incorporates a priori information about
the desired behavior can be derived using a monitor function defined to control
the cells with desired properties ([1, 2, 3, 5]). These operators are based on
variational smoothing methods([2]), and are derived by the minimization of
appropriate grid functionals for area, length and orthogonality, and denoted
as FA, FL and FO, respectively. Knupp [6], Chibisov [3] and Khattri [5] have
shown that a linear combination of these functionals results in valid meshes
for a wide range of engineering applications.

2 Numerical Discretization and Validation

Although there are clear advantages in terms of flexibility and generality in
using unstructured discretizations, little attention has been addressed to ex-
tend the method to such meshes. The reason is that the Winslow operator is
in non-conservative form, and therefore, the conventional integration schemes
cannot be applied to unstructured meshes.

Recently, Karman [4] has introduced a finite volume discretization of the
Winslow operator based on linearizing the equations. For a given point, a
control volume is constructed in virtual space where the element shapes are
nearly ideal.

Individual functionals and weighted combination of Length (L), Area (A)
and Orthogonality (O) are studied to assess their effect on the discontinuous
45o wedge geometry. As it can be seen from Figs. 1 (a) and (b), the area and
orthogonality functionals yield non-smooth meshes, due to the non-elliptic
nature of the equations, whereas length functional, Fig. 1 (c), gives smooth
meshes regardless of the boundary curvature. The area-length (AL) combi-
nation shown in Fig. 1 (d) tries to overcome two important limitations of its
individual functionals, which are lack of smoothness for area and degenerate
cells for the length functionals. However, the solution to the AL equations
fails around the tip of the wedge. A similar effect can be seen in Fig. 1 (e)
for orthogonality-length (OL) due to effect of the length functional. But here
more cells are folded compared to Fig. 1 (d). As it is shown in Fig. 1 (f) even
though the AO meshes are not always completely satisfactory because of the
non-elliptic nature of the operators, the grid smoothness is better than its
individual functionals. This can be cured by a weighted combination of area
and orthogonality functionals as well.

Figs. 2 illustrate the effect of different grid functionals around a four-
petal configuration. As expected, the mesh obtained by the area functional
(A) Fig. 2 (a) presents some discontinuities in cell sizes in the domain even
though the grid is valid. The same observation can be made regarding the
orthogonality functional (O) shown in Fig. 2 (b). Fig. 2 (c) confirms that
the length functional (L), or Laplace equation, yields a smooth grid. However
folded cells appear around the higher curvature parts of the domain. The
combinations of the area-length (AL), Fig. 2 (d), and orthogonality-length
(OL) functionals, Fig 2 (e), show that the effect of the length functionals in
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(a) Area functional (b) Orthogonality functional

(c) Length functional (d) Area-Length functional

(e) Length-Orthogonality functional (f) Area-Orthogonality functional

Fig. 1. Comparison of individual and combinations of different functionals over a
45o wedge
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those equations creates inverted cells around the non-convex regions. This
is because of the inherent property of the Laplace which is a pure diffusion
equation.

3 Conclusion

The combination of the functional-based mapping operators and finite volume
discretization scheme yields an operational method to handle complex con-
figurations with large curvature variations, allowing the construction of valid,
non-tangled, meshes. Moreover, individual and combinations of area, length
and orthogonality functionals were studied and applied to two test cases. Re-
sults on both the wedge and four-petal configurations show how the final
meshes are dominated by the length functional and how its absence leads to
discontinuities in cell size distribution. It is suggested that non-weighted com-
binations of area and length (AO) can be used for a wide range of engineering
applications. Usually, choosing the right values for weights ωA, ωL and ωO is
based on trial and error for each geometry considered. Thus using a general
criteria to calculate the best combination of weights based on a distance field
appears as a possible avenue to improve upon current functionals with fixed
weights. This approach is currently under development.

References

1. B.N. Azarenok. Generation of structured difference grids in two-dimensional
nonconvex domains using mappings. Journal of Computational Mathematics
and Mathematical Physics, 49(5):797–809, 2009.

2. J.E. Castillo, S. Steinberg, and P.J. Roache. On the folding of numerically gener-
ated grids: use of reference grid. Journal of Communications in Applied Numerical
Methods, 4:471–481, 1988.

3. D. Chibisov, V. Ganzha, E.W. Mayr, and E.V. Vorozhtsov. On the provable tight
approximation of optimal meshing for non–convex regions. In Computational
topology and geometry in application of computer algebra (ACA2006), page 20,
Varna, Bulgaria, June 2006.

4. S.L. Karman. Virtual control volumes for two dimensional unstructured elliptic
smoothing. In Proceedings of the 19th International Meshing Roundtable, pages
121–142, Chattanooga, TN, USA, 2010. Sandia National Laboratory.

5. S.K. Khattri. Grid generation and adaptation by functionals. Journal of
Computational and Applied Mathematics, 26(2):235–249, 2007.

6. P. Knupp and S. Steinberg. Fundamentals of Grid generation. 1993.
7. S.P. Spekreijse. Elliptic generation based on laplace equations and algebraic

transformations. Journal of Computational Physics, 118:38–61, 1995.
8. V. Villamizar and S. Acosta. Elliptic grids with nearly uniform cell area and line

spacing. Electronic Transactions on Numerical Analysis, pages 59–75, 2009.
9. A. M. Winslow. Numerical solution of the quasi-linear Poisson equation in a

non-uniform triangular mesh. Journal of Computational Physics, 135:128–138,
1997.



Comparison of Mapping Operators for Unstructured Meshes 5

(a) ’A’ , ωA = 1, ωO = ωL = 0 (b) ’O’ , ωO = 1, ωA = ωL = 0

(c) ’L’ , ωL = 1, ωA = ωO = 0

(d) ’AL’, ωO = 0, ωA = ωL = 0.5 (e) ’OL’, ωA = 0, ωO = ωL = 0.5

Fig. 2. Comparison of different functionals for a four-petal rose


